A Fuzzy Sliding Mode Controller Using Nonlinear Sliding Surface Applied to the Coupled Tanks System
نویسندگان
چکیده
Several methods of chattering reduction have been reported. One approach [5] places a boundary layer around the switching surface such that the relay control is replaced by a saturation function. Another method [6] replaces a max-min-type control by a unit vector function. These approaches involve a trade-off between chattering and robustness. The aim of this paper is to develop a Fuzzy sliding mode controller (FSMC) with a nonlinear sliding surface for a coupled Tanks system. In the present work, a first-order nonlinear sliding surface is presented, on which the developed control law is based. Mathematical proof for the stability and convergence of the system is presented. In order to reduce the chattering in sliding mode controller (SMC), a fixed boundary layer around the switch surface is used. Within the boundary layer, since the fuzzy logic control is applied, the chattering phenomenon, which is inherent in a sliding mode control, is avoided by smoothing the switch signal. Outside the boundary, the sliding mode control is applied to driving the system states into the boundary layer. Experimental studies carried out on a coupled Tanks system indicate that the proposed approach is a good candidate for control applications.
منابع مشابه
Observer Based Fuzzy Terminal Sliding Mode Controller Design for a Class of Fractional Order Chaotic Nonlinear Systems
This paper presents a new observer based fuzzy terminal sliding mode controller design for a class of fractional order nonlinear systems. Robustness against uncertainty and disturbance, the stability of the close loop system and the convergence of both the tracking and observer errors to zero are the merits of the proposed the observer and the controller. The high gain observer is applied to es...
متن کاملDesign On-Line Tunable Gain Artificial Nonlinear Controller
One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...
متن کاملDesign On-Line Tunable Gain Artificial Nonlinear Controller
One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...
متن کاملFuzzy Sliding Mode for Spacecraft Formation Control in Eccentric Orbits
The problem of relative motion control for spacecraft formation flying in eccentric orbits is considered in this paper. Due to the presence of nonlinear dynamics and external disturbances, a robust fuzzy sliding mode controller is developed. The slopes of sliding surfaces of the conventional sliding mode controller are tuned according to error states using a fuzzy logic and reach the pre-define...
متن کاملDesigning fuzzy-sliding mode controller with adaptive sliding surface for vector control of induction motors considering structured and non-structured uncertainties
Induction motors with nonlinear dynamics are superior in terms of size, weight, motor inertia, maximum speed, efficiency, and cost than direct current machines, and hence their control is of great important. The main objective of this paper is to design a fuzzy sliding mode controller in order to control the position of the induction motor including parametric and non-parametric uncertainties b...
متن کامل